Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 204: 108087, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37847974

RESUMO

Waterlogging is a major disaster damaging crop production. However, most sweetcorn cultivars are not tolerant to waterlogging, which severely threatens their production. In order to understand the genetic mechanisms underlying waterlogging tolerance in sweetcorn, this study conducted a comprehensive investigation of sweetcorn waterlogging tolerance at the levels of physiology, biochemistry, and transcriptome in two sweetcorn CSSLs (chromosome segment substitution lines), D120 and D81. We found that D120 showed increased plant height, root length, root area, adventitious root numbers, antioxidant enzyme activities, and aerenchyma area ratio compared to D81. The transcriptome results showed that 2492 and 2351 differentially expressed genes (DEGs) were obtained at 4 h and 8 h of waterlogging treatment, respectively. Genes involved in reactive oxygen species (ROS) homeostasis, photosynthesis, and alcohol fermentation are sensitive in the waterlogging tolerant genotype D120, resulting in enhanced ROS scavenging ability, adventitious roots, and aerenchyma formation. Additionally, ethylene-, auxin-, and ABA-related genes exhibited different responses to waterlogging stress in sweetcorn. We integrated transcriptome and differential chromosomal fragments data and identified that ZmERF055 on chromosome 9 was directly involved in waterlogging stress. ZmERF055-overexpressing plants consistently exhibited significantly increased waterlogging tolerance and ROS homeostasis in Arabidopsis. These results offer a network of plant hormone signaling, ROS homeostasis, and energy metabolism co-modulating waterlogging tolerance in sweetcorn. Additionally, the findings support ZmERF055 as a potential ideal target gene in crop breeding to improve plant waterlogging tolerance.


Assuntos
Perfilação da Expressão Gênica , Melhoramento Vegetal , Espécies Reativas de Oxigênio , Transcriptoma/genética , Reguladores de Crescimento de Plantas , Raízes de Plantas/genética
2.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239820

RESUMO

Trichomes are attractive cells for terpenoid biosynthesis and accumulation in Artemisia annua. However, the molecular process underlying the trichome of A. annua is not yet fully elucidated. In this study, an analysis of multi-tissue transcriptome data was performed to examine trichome-specific expression patterns. A total of 6646 genes were screened and highly expressed in trichomes, including artemisinin biosynthetic genes such as amorpha-4,11-diene synthase (ADS) and cytochrome P450 monooxygenase (CYP71AV1). Mapman and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that trichome-specific genes were mainly enriched in lipid metabolism and terpenoid metabolism. These trichome-specific genes were analyzed by a weighted gene co-expression network analysis (WGCNA), and the blue module linked to terpenoid backbone biosynthesis was determined. Hub genes correlated with the artemisinin biosynthetic genes were selected based on TOM value. ORA, Benzoate carboxyl methyltransferase (BAMT), Lysine histidine transporter-like 8 (AATL1), Ubiquitin-like protease 1 (Ulp1) and TUBBY were revealed as key hub genes induced by methyl jasmonate (MeJA) for regulating artemisinin biosynthesis. In summary, the identified trichome-specific genes, modules, pathways and hub genes provide clues and shed light on the potential regulatory mechanisms of artemisinin biosynthesis in trichomes in A. annua.


Assuntos
Artemisia annua , Artemisininas , Artemisia annua/genética , Tricomas/genética , Tricomas/metabolismo , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...